Dietary Exposure of Mink (*Neovison vison*) to Fish from the Upper Hudson River, New York, USA: Effects on Reproduction, Offspring Growth, Mortality, Organ Mass and Pathology

Steve Bursian

Department of Animal Science

Michigan State University

Co-Authors

John Kern, Richard E. Remington KERN Statistical Services

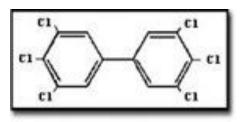
Jane E. Link
Department of Animal Science
Michigan State University

Scott D. Fitzgerald

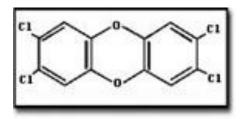
Department of Pathobiology and Diagnostic
Investigation

Michigan State University

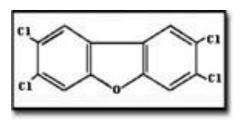
Outline


- Polychlorinated Hydrocarbons
- 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-like chemicals
- Toxic equivalency (TEQ) approach
- Why mink?
- Hudson River study
 - Introduction
 - Methods
 - Results
 - Summary and Conclusions

Polychlorinated Hydrocarbons

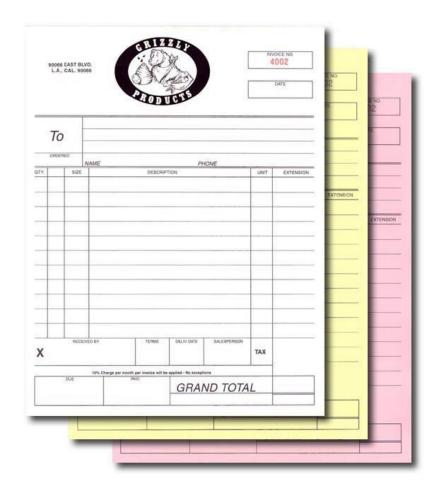

- Include
 - Polychlorinated biphenyls (PCBs)
 - Polychlorinated dibenzo-p-dioxins (PCDDs)
 - Polychlorinated dibenzofurans (PCDFs)
- PCBs, PCDDs, PCDFs as environmental contaminants
 - Widespread
 - Persistent

Polychlorinated Hydrocarbons


- PCBs, PCDDs, **PCDFs** grouped together because of similarities in:
 - Structure
 - Mechanism of action and toxic effects
 - Occurence in environment

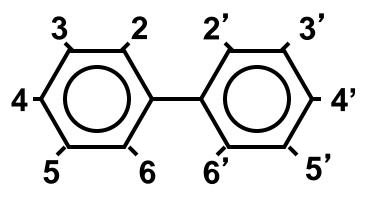
3,3',4,4',5,5'-hexachlorobiphenyl

2,3,7,8-tetrachlorodibenzo-p-dioxin


- Commercially produced in US by Monsanto
- 1.4 billion lbs from 1930-1975
- 90% used in US

- Used as nonflammable oils
 - Transformers
 - Condensers
 - Paints

- Used as
 - Plasticizers
 - Flame retardants
 - Electrical insulators in small appliances
 - Suspension vehicle for pigment in carbonless copy paper
 - Microscope immersion oil



- Production for open-ended uses ended in 1971
- Production ceased completely in 1977
- 54% still in use
- 31% in the environment

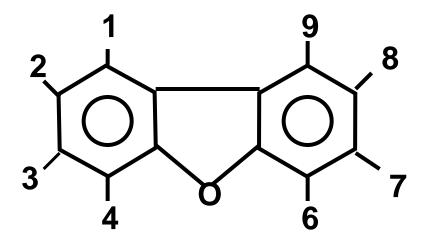
- Commercial PCB products (Aroclors)
 - 15 Aroclor products
 - Aroclors 1242,1248,1254,1260
 - Complex mixtures of individual congeners

209 Congeners

PCDDs/PCDFs

- By-products of various activities
 - Production of bleached paper by pulp and paper mills
 - Individual, municipal, industrial, and hazardous waste incineration
 - Wood burning stoves and fireplaces

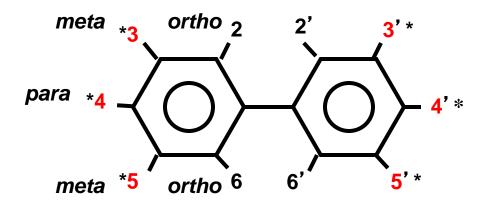
PCDDs/PCDFs


- Petroleum refining
- Synthesis of certain chlorinated chemicals (pentachlorophenol, hexachlorophene, chlorinated phenoxy herbicides, PCBs, chlorinated benzenes)

PCDDs

75 Congeners

PCDFs



135 Congeners

TCDD most toxic based on LD₅₀ in guinea pigs

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)

 Of the 209 PCB congeners, the most toxic are the non-ortho, coplanar congeners

- Four important non-ortho PCB congeners
 - 3,3'4,4'-tetrachlorobiphenyl (PCB 77)
 - 3,4,5,4'-tetrachlorobiphenyl (PCB 81)
 - 3,3'4,4',5-pentachlorobiphenyl (PCB 126)
 - 3,3' 4,4' ,5,5' -hexachlorobiphenyl (PCB 169)

- Mono-ortho PCB congeners: 1 chlorine in the ortho (2, 6, 2', 6') position
 - Less toxic than the non-ortho, coplanar PCB congeners
 - 8 mono-ortho TCDD-like PCB congeners
- 7 TCDD-like PCDDs
- 10 TCDD-like PCDFs

- TCDD-like chemicals have same mechanism of action as TCDD
 - TCDD binds to aryl hydrocarbon (Ah) receptor to induce characteristic effects
 - TCDD-like PCBs, PCDDs and PCDFs also bind to Ah receptor and elicit similar effects, although with less potency

The Toxic Equivalency Approach

- Because these TCDD-like chemicals act via a common mechanism, the toxic equivalency approach can be used
- The toxicity of individual PCDD, PCB and PCDF congeners is assessed based on evaluation of data from in vitro and in vivo studies, leading to determination of TCDDtoxic equivalent factors (TEFs)
- These TEFs are order-of-magnitude consensus estimates of TCDD-like toxicity

The Toxic Equivalency Approach

- TEFs are used to weigh measured concentrations of the congeners present in a sample in relation to TCDD, which is assigned a TEF of 1
- Product of measured concentration of each congener and TEF weighing factor = concentration of TCCD-toxic equivalents (TEQs) contributed by that congener
- The total TCDD-like toxicity associated with the sample is the sum of the TEQs contributed by each TCDD-like congener

TEFs of PCDD Congeners

- 2,3,7,8-TCDD1.0
- 1,2,3,7,8-PeCDD1.0
- 1,2,3,4,7,8-HxCDD0.1
- 1,2,3,6,7,8-HxCDD0.1

- 1,2,3,7,8,9-HxCDD0.1
- 1,2,3,4,6,7,8-HpCDD0.01
- OCDD0.0003

TEFs of PCDF Congeners

- 2,3,7,8-TCDF0.1
- 1,2,3,7,8-PeCDF0.03
- 2,3,4,7,8-PeCDF0.3
- 1,2,3,4,7,8-HxCDF0.1
- 1,2,3,6,7,8-HxCDF0.1

- 1,2,3,7,8,9-HxCDF0.1
- 2,3,4,6,7,8-HxCDF0.1
- 1,2,3,4,6,7,8-HpCDF0.01
- 1,2,3,4,7,8,9-HpCDF0.01
- OCDF 0.0003

TEFs of Non-ortho PCB Congeners

PCB 77

0.0001

PCB 81

0.0003

PCB 126

0.1

PCB 169

0.03

TEFs of Mono-ortho PCB Congeners

- PCB 1050.00003
- PCB 1140.00003
- PCB 1180.00003
- PCB 1230.00003

- PCB 1560.00003
- PCB 157 0.00003
- PCB 1670.00003
- PCB 1890.00003

TCDD-TEQs in Lake Wobegon Fish

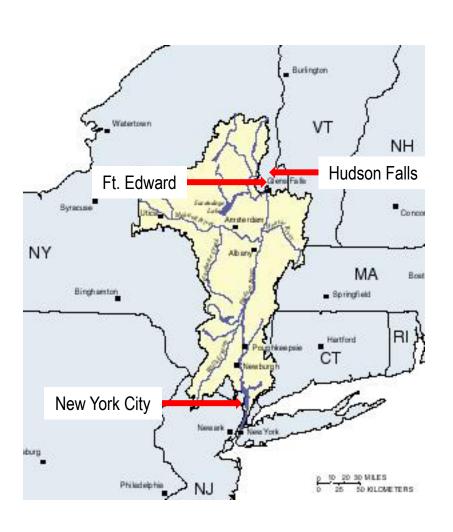
Congener	[] in fish (pg/g)	TEF	TEQs (pg/g)
PCB 126	410	0.1	41.0 (88%)
PCB 169	105	0.03	3.2 (6.8%)
PCB 156	23,000	0.00003	0.7 (1.5%)
TCDD	0.5	1.0	0.5 (1.1%)
2,3,4,7,8- PeCDF	4.6	0.3	1.4 (3.0%)
Total TEQs			46.8

Why Mink?

Why Mink?

 Mink (Neovison vison) used as a representative species to study effects of TCDD-like chemicals on piscivorous mammals

Why Mink?


- Exposed to high concentrations of TCDD-like compounds because of diet and position in the food chain
- Sensitive to TCDDlike chemicals
- Can be used in controlled exposure situations

Hudson River Study

Introduction

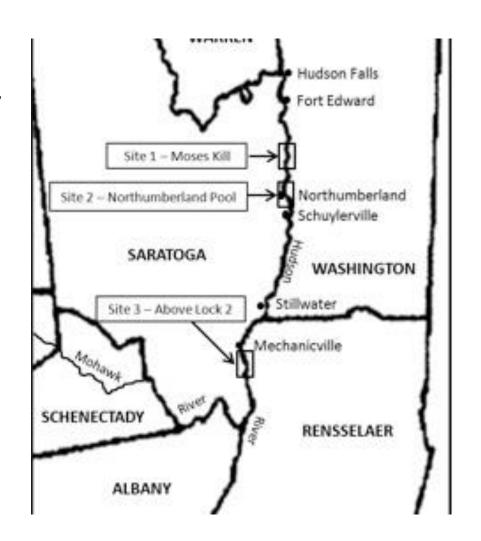
- Hudson River
 - Contaminated with PCBs from Ft. Edward to New York City
- Major sources of PCBs
 - Manufacturing facilities at Ft. Edward and Hudson Falls

Introduction

- Field studies over past 30 years
 - Evidence that wild mink have hepatic PCB concentrations suggesting risk of reproductive impairment
 - Concentrations have not decreased appreciably

Introduction

- Mink collected from PCB-contaminated sections of the Hudson River between Fort Edward and Troy between 1998 and 2001
 - Hepatic ∑PCBs concentrations
 - Within 6 km (1 home range) = 13 μg/g lipid (0.54 139)
 - Within 1 km of river = 33 μg/g lipid (1.4 139)
 - LOAECs for reduced kit survival
 - 45 μg/g lipid (Heaton et al.1995; Saginaw Bay)
 - 29 μg/g lipid (Bursian et al. 2006; Housatonic River)


Objective

- To evaluate health effects of feeding ranch mink diets containing PCBcontaminated fish from the Hudson River
 - Reproductive performance
 - Offspring survival
 - Organ mass and tissue pathology

Methods

- Carp collected from 3 locations on upper Hudson River between Fort Edward and just south of Mechanicville
 - Moses Kill
 - Northumberland Pool
 - Lock 2 vicinity

 Ground fish (ocean herring and/or HR carp) incorporated into feed at a rate of 20%

Dietary Concentrations of ∑PCBs and TEQs

Ocean herring (0.09 μg ΣPCBs/g, ww) Hudson River carp (36 μg ΣPCBs/g, ww)	20% 0%	17.5% 2.5%	15% 5%	10% 10%	5% 15%	0% 20%
Targeted dietary concentrations (µg ∑PCBs/g feed)	0	0.90	1.8	3.6	5.4	7.2
Analyzed dietary concentrations (µg ∑PCBs/g feed)	0.007	0.72	1.5	2.8	4.5	6.1
Total TEQs (pg TEQs/g feed)	0.72	5.4	10	20	28	38

Contribution to TEQs

- PCDDs = 1.5%
- PCDFs = 1.4%
- PCBs = 97%
 - Non-ortho PCBs = 75%
 - PCB 126 = 75%
 - Mono-ortho PCBs = 22%

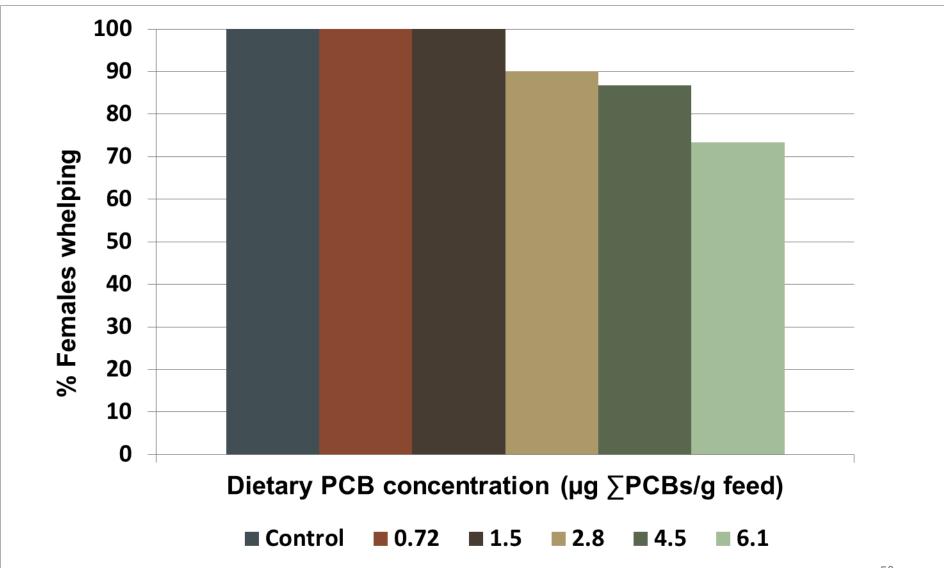
Number of Female and Male Mink per Treatment Group

	μg ∑PCBs/g feed					
	Control	0.72	1.5	2.8	4.5	6.1
# Females	15	10	10	10	15	15
# Males	5	5	5	5	5	5

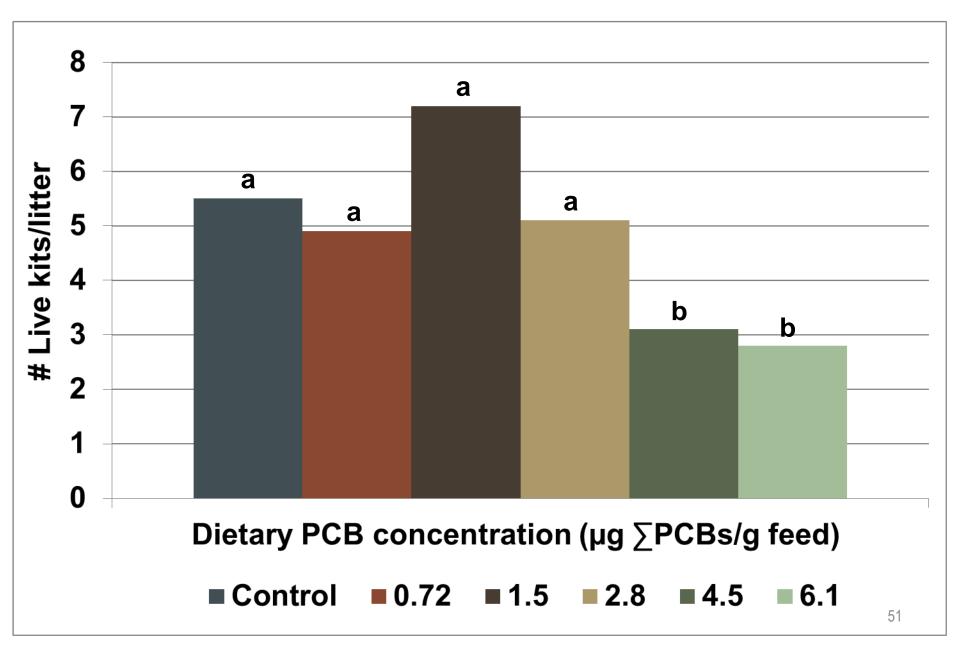
- Animals housed singly in open-sided pole barn
- Test diets fed from 8
 weeks prior to breeding
 (first 3 wks of March)
 through weaning of kits
 (mid-June) ≈ 160 days
- Kits weighed at 24 hr post-partum and at 3 and 6 wk of age

- Adults and sample of kits necropsied when kits were ≈ 6 wk old
- Liver, brain, heart, kidneys, spleen, thyroid gland, adrenal glands, testes/uterus, mandible/maxilla removed, weighed, fixed for histology
- Portion of liver frozen for contaminant analysis

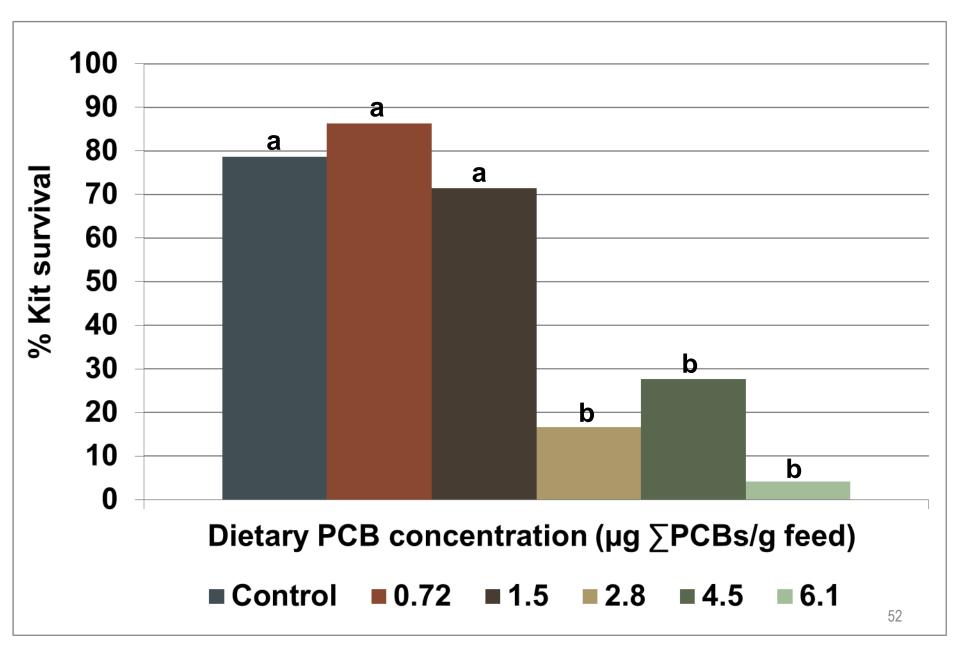
- Remaining kits maintained on dietary treatment until ~ 31 wk old
 - Control 47 kits
 - 0.72 μg ΣPCBs/g 24 kits
 - 1.5 μg ΣPCBs/g 13 kits
 - 2.8 μg ΣPCBs/g 9 kits
 - 4.5 μg ΣPCBs/g 12 kits
 - 6.1 μg ΣPCBs/g 2 kits
- Necropsied juveniles (30 controls and 23 in 0.72 μg ΣPCBs/g feed group)

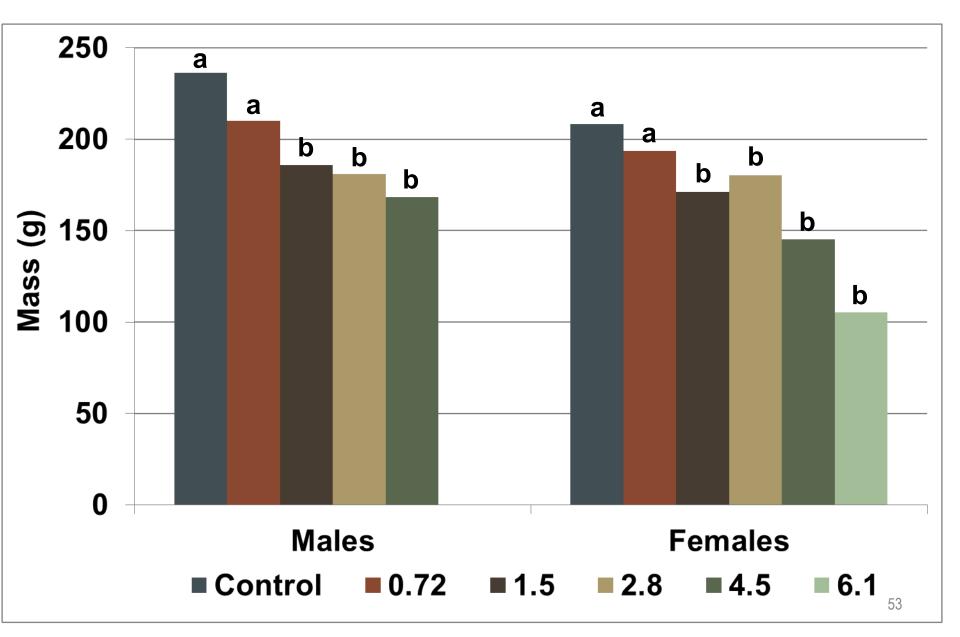

Summary of Study Endpoints, Data Types and Statistical Analysis Methods

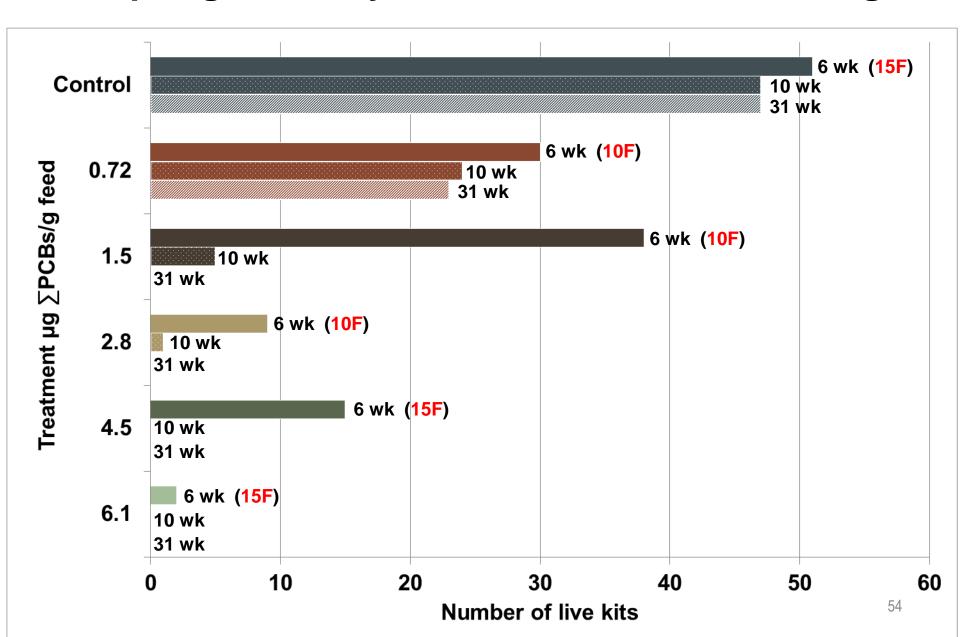
Endpoint	Data Type	Statistical Methods		
Adult body weight	Continuous	Generalized Estimating Equations		
Addit body weight	Continuous	Regression for Repeated Measures		
Adult feed consumption	Continuous	Generalized Estimating Equations		
Addit feed consumption	Continuous	Regression for Repeated Measures		
Number of females mated	Binary	Logistic Regression / Fisher's Exact		
Number of females mateu	Billary	Test		
Length of gestation	Continuous	ANOVA / Linear Regression		
Number of females whelping	Binary	Logistic Regression / Fisher's Exact		
Number of females whelping	Billary	Test		
Number whelped per female	Count	Negative Binomial Regression		
Number whelped live per female	Count	Negative Binomial Regression		
Average litter weight	Continuous	ANOVA / Linear Regression		
Kit weight at birth, three and six	Continuous	Linear Generalized Estimating		
weeks	Continuous	Equation Regression		
Kit mortality at three and six	Binary	Beta-Binomial Regression		
weeks	Бшагу			
Monthly body weights of seven-	Continuous	Linear Generalized Estimating		
month-old juveniles	Continuous	Equation Regression 48		


Summary of Study Endpoints, Data Types and Statistical Analysis Methods

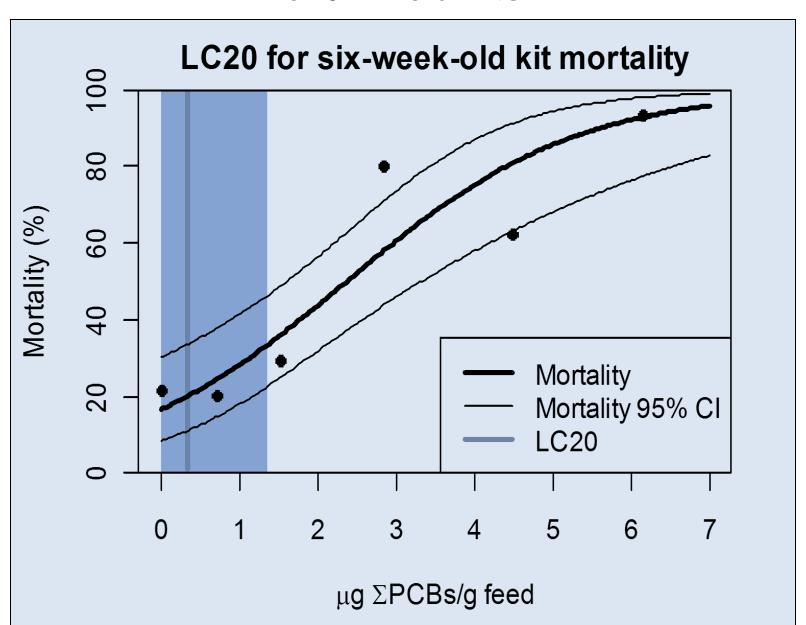
Adult organ weights	Continuous	ANOVA / Linear Regression		
Six-week-old kit organ weight	Continuous	Linear Generalized Estimating Equation Regression		
Seven-month-old juvenile organ weight	Continuous	Linear Generalized Estimating Equation Regression		
Total PCB and Total TEQs in adult livers	Continuous	ANOVA / Linear Regression		
Total PCB and Total TEQs in six-week-old kit livers	Continuous	Linear Generalized Estimating Equation Regression		
Total PCB and Total TEQs in seven-month-old juveniles livers	Continuous	Linear Generalized Estimating Equation Regression		
Histopathology of adult organs and jaws	Binary	Logistic / Fisher's Exact Test		
Histopathology of six-week-old kit organs and jaws	Binary	Beta-Binomial Regression / Fisher's Exact Test		
Histopathology of seven-month- old juvenile organ and jaws	Binary	Beta-Binomial Regression / Fisher's Exact Test		

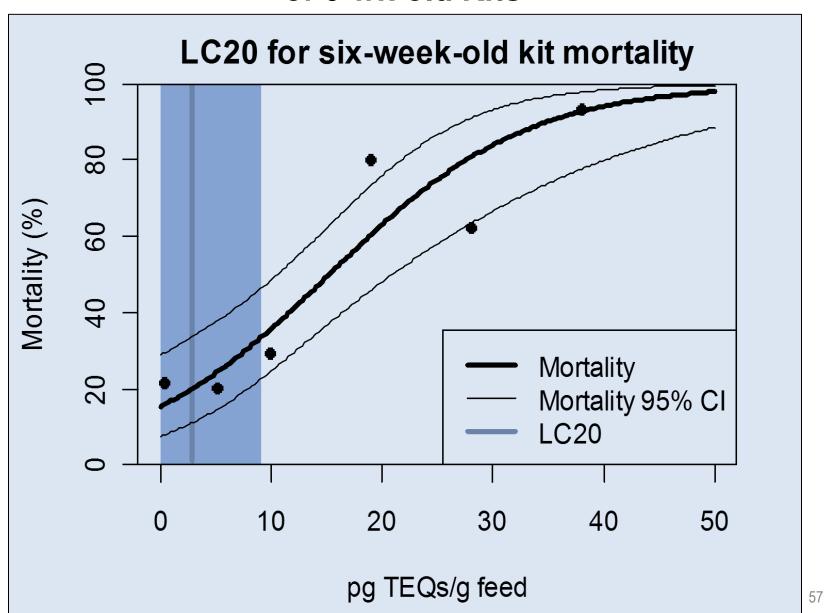

Percent of Females Whelping


Live Kits Per Litter

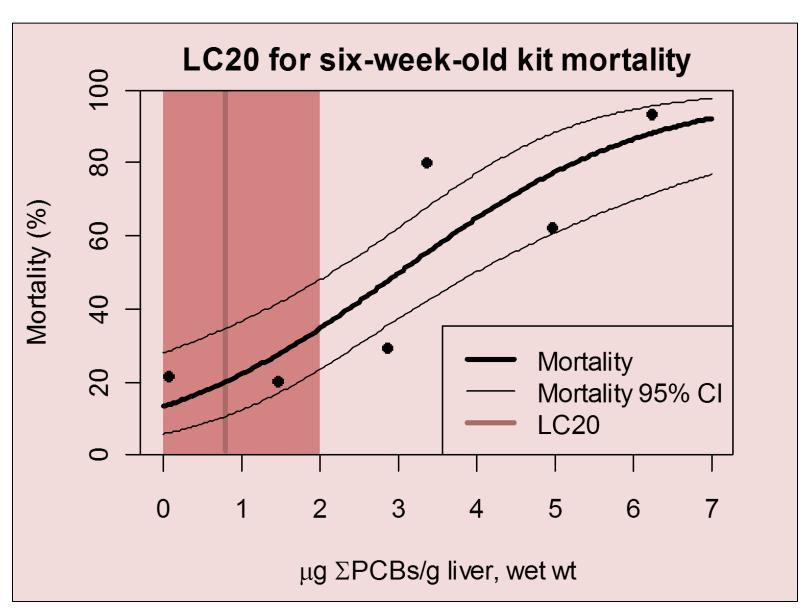

Percent Survival of 6-wk-old Kits

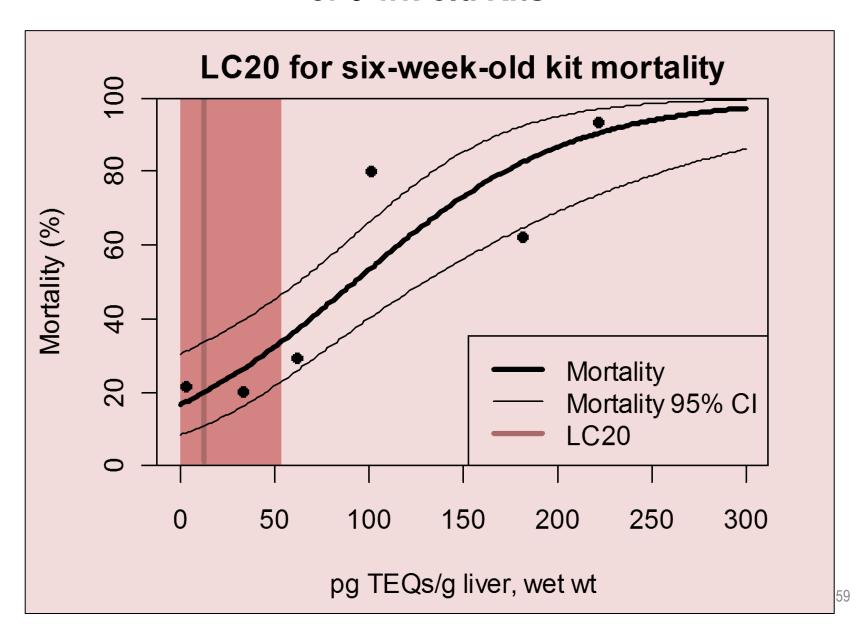
Mass of 6-wk-old Kits

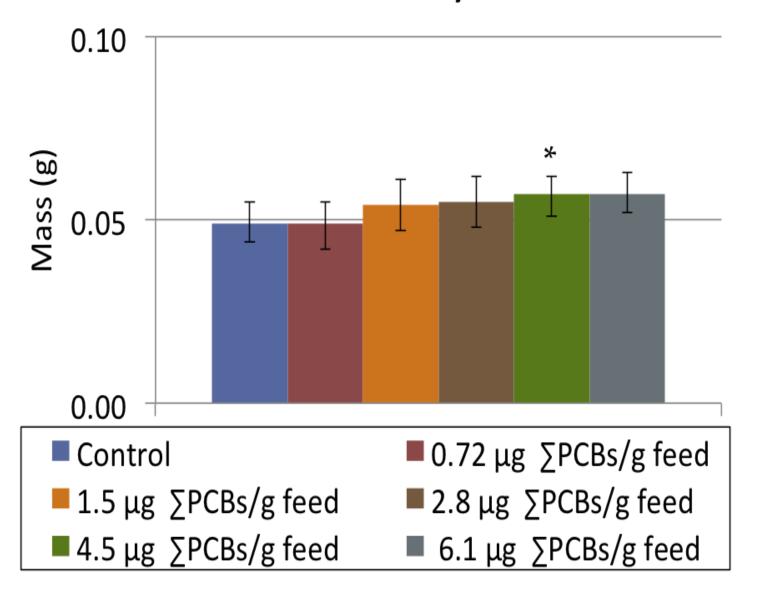

Offspring Mortality Between 6 and 31 Wk of Age

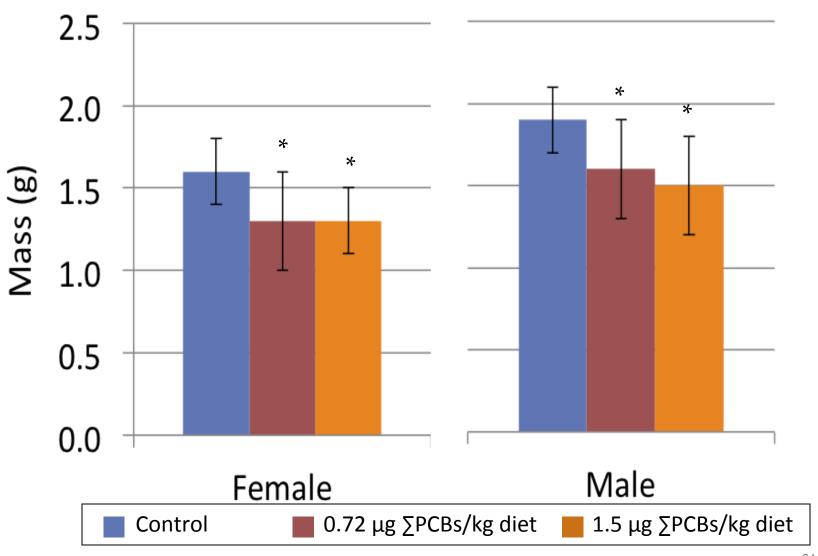

Dietary and Maternal Hepatic Concentrations of ∑PCBs and TEQs

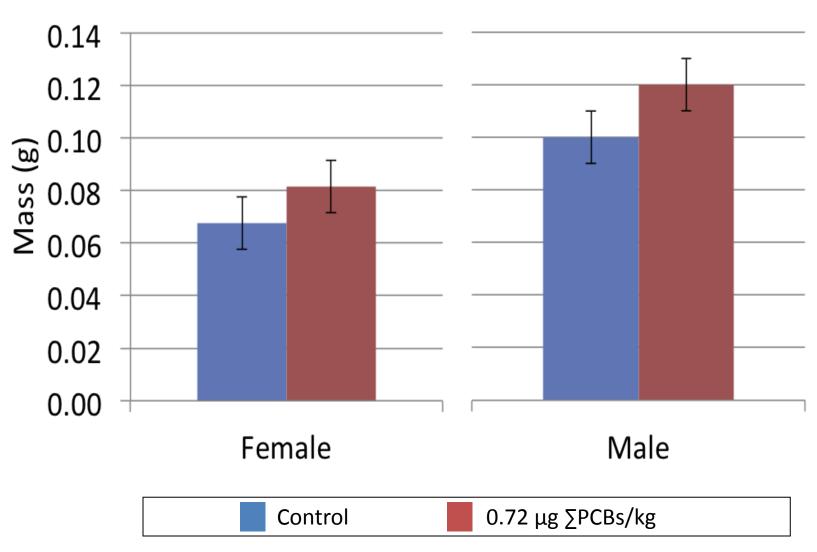
Dietary PCBs (μg ∑PCBs/g feed)	0.007	0.72	1.5	2.8	4.5	6.1
Dietary TEQs (pg TEQs/g feed)	0.72	5.4	10	20	28	38
Hepatic PCBs (µg ∑PCBs/g liver)	0.051	1.4	2.8	3.3	4.9	6.2
Hepatic TEQs (pg TEQs/g liver)	2.4	33	61	101	181	220


Dietary ΣPCBs/TEQs Associated with 20% Mortality of 6-wk-old Kits

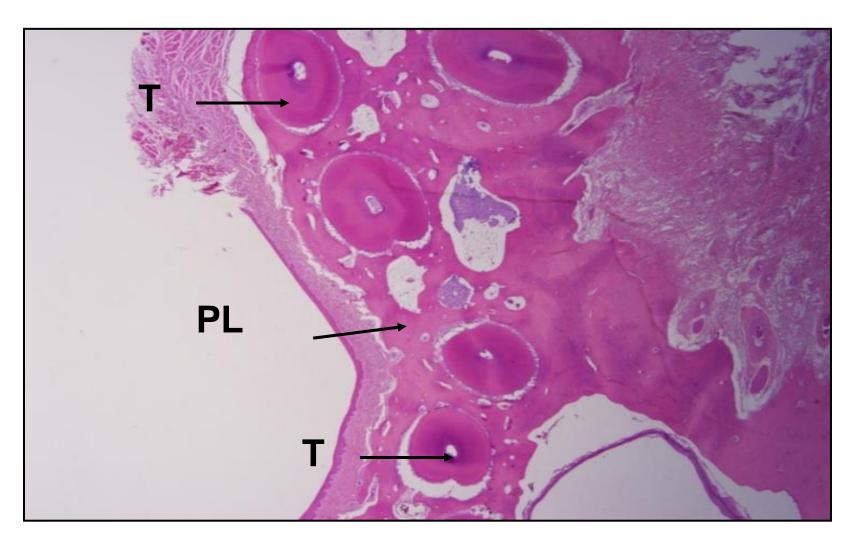

Dietary TEQs Associated with 20% Mortality of 6-wk-old Kits


Hepatic ΣPCBs Associated with 20% Mortality of 6-wk-old Kits


Hepatic TEQs Associated with 20% Mortality of 6-wk-old Kits


Effect of feeding Hudson River fish on adult female mink thyroid mass

Effect of Feeding Hudson River Fish on 6-wk-old Mink Kit Heart Mass



Effect of Feeding Hudson River Fish on 31-wk-old Juvenile Mink Adrenal Gland Mass

Effective Concentrations of ∑PCBs and TEQs in Feed and Liver Producing Jaw Lesions in 20% and 50% of Adult Mink (EC20, EC50)


		EC20	95% Confidence Interval	EC50	95% Confidence Interval
Feed	µg ∑PCBs/g feed	2.3	1.5 – 3.1	3.9	3.2 - 4.6
	pg TEQs/g feed	15	10 - 20	25	21 - 29
Liver	μg ∑PCBs/g liver	2.8	2.1 – 3.6	4.4	3.7 - 5.1
	pg TEQs/g liver	89	58 - 121	151	125 - 178

Normal maxilla from a control adult female mink showing teeth (T) and peridontal ligament (PL).

Maxilla of a 4.5 μ g Σ PCBs/g feed adult female mink showing mild squamous epithelial cell (SCC – squamous cell cyst) proliferation (one site).

Maxilla of a 4.5 μ g Σ PCBs/g feed adult female mink showing moderate squamous epithelial cell proliferation at two sites.

Maxilla of a 6.1 μg ΣPCBs/g feed adult male showing severe squamous epithelial cell proliferation shown at multiple sites.

Displacement and Loss of Teeth

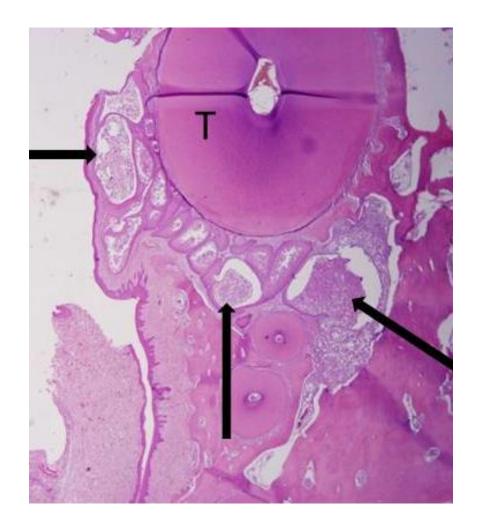
 Reproductive performance of adult female mink and offspring survival and growth were adversely affected by consumption of feed containing PCBs derived from fish collected from the Hudson River

Reproductive Performance

 # Stillborn kits/litter increased by dietary concentrations of 4.5 µg ∑PCBs/g feed (28 pg TEQs/g feed) and greater

Kit Survivability

- Dietary LC20 based on kit survivability at 6 wk of age = 0.34 μg
 ∑PCBs/g feed (2.9 pg TEQs/g feed)
- Hepatic LC20 based on kit survivability at 6 wk of age = 0.80 μg
 ∑PCBs/g liver, ww (13 pg TEQs/g liver, ww)


Kit Growth

Average body masses in the 1.5, 2.8 and 4.5 µg ∑PCBs/g feed groups (10, 19 and 28 TEQs/g feed, respectively) were less than controls at 6 wk of age

Organ Mass

- ↑ thyroid mass of adult females, ♦ heart mass of 6wk-old kits, ↑ adrenal gland mass of juvenile mink
- Tissue Histopathology
 - Development of a jaw lesion in adult mink characterized as mandibular and maxillary squamous epithelial proliferation
 - Dietary EC20 = 2.3 μg ∑PCBs/g (15 pg TEQs/g)
 - Dietary EC50 = 3.9 μ g Σ PCBs/g (25 pg TEQs/g)
 - Hepatic EC20 = 2.8 μg ∑PCBs/g (89 pg TEQs/g)
 - Hepatic EC50 = 4.4 µg ∑PCBs/g (151 pg TEQs/g)

- EC20 based on the jaw lesion is 6-fold greater than LC20 based on kit survivability
- EC50 based on the jaw lesion is 1.7-fold greater than LC50 based on kit survivability

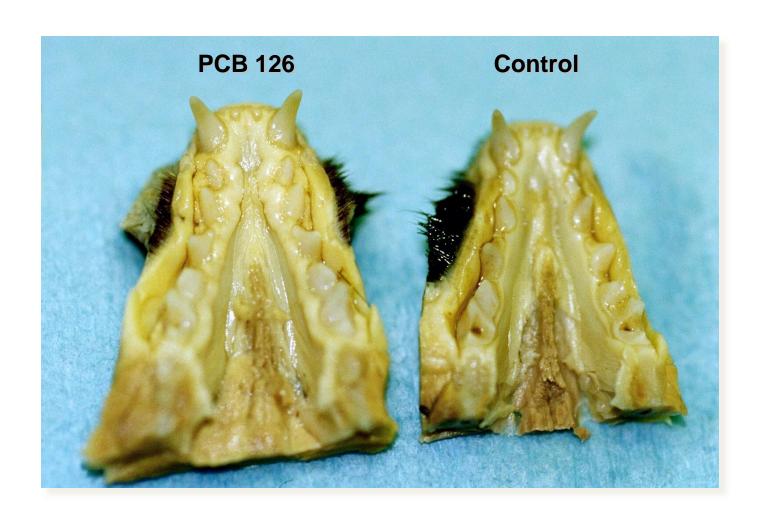
The conclusions and opinions presented here are those of the authors, they do not represent the official position of any of the funding agencies, the Hudson River Trustees or the United States. Funding provided by the Hudson River Trustees.

QUESTIONS?

Steve Bursian Department of Animal Science Michigan State University East Lansing, MI 48824 bursian@msu.edu

- Study designed to examine effects of PCB 126 on baculum development in juvenile male mink
- 12-week-old male mink fed diets containing 0 or 24 ng PCB 126/g feed for up to 70 days
- After 31 days, an animal observed having difficulty chewing

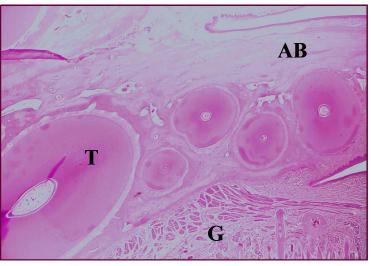
- Gross displacement of incisor and canine teeth
- Swelling of mandibular and maxillary gingiva
- All 20 mink exposed to PCB 126 had lesion by day 70

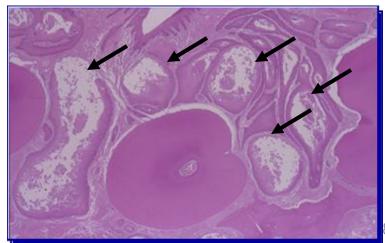

Displacement and Loss of Teeth

Gingival Thickening

Osteolysis of Skull

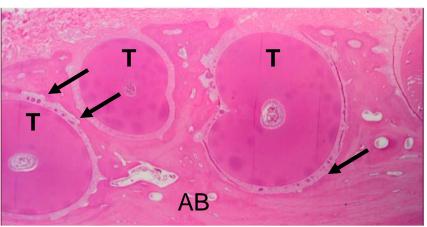
Osteolysis of Skull




Osteolysis of Skull

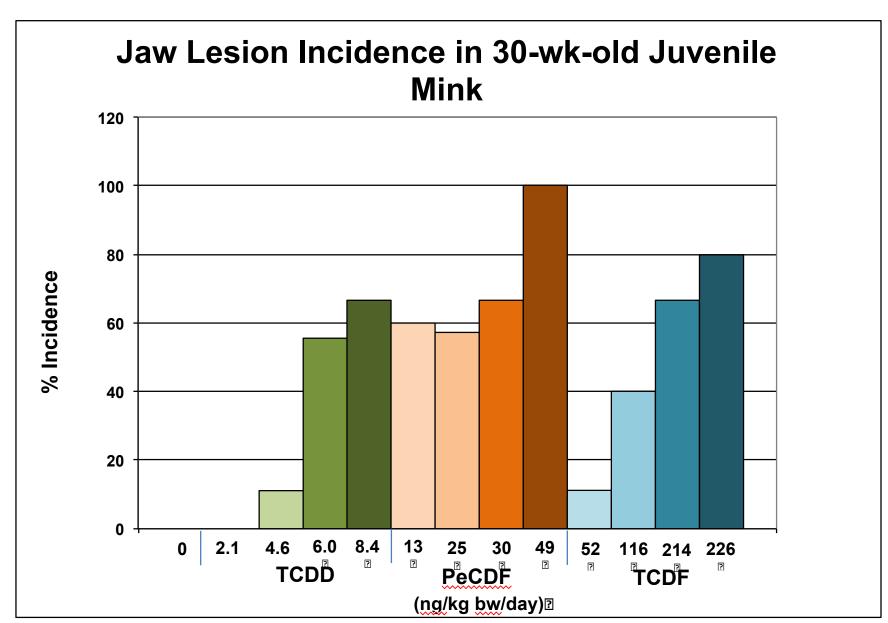
Histological Evidence of the Lesion

- Nests and cords of squamous epithelial cells within the periodontal ligament of multiple teeth
- Extended into the adjacent alveolar bone



- Could the lesion be induced by exposure to TCDD?
- 12-week-old mink fed diets containing
 - 2.4 ng TCDD/g
 - 24 ng PCB 126/g

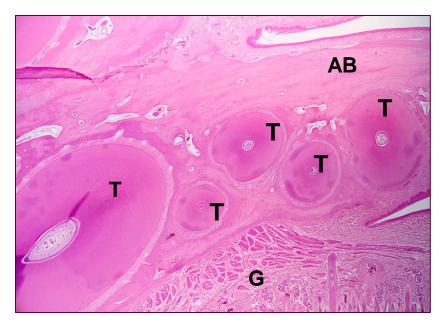
- Gross displacement of the incisor and canine teeth by day 15 in both groups
- Histologically:
 - Nests of infiltrative squamous epithelium in the periodontal ligament
 - Loss of alveolar bone


- Could the lesion be induced by exposure to TCDD-like PCDFs?
- Reproduction trial assessing effects of exposure to environmentally relevant concentrations of:
 - TCDD
 - 2,3,4,7,8-PeCDF
 - **2,3,7,8-TCDF**

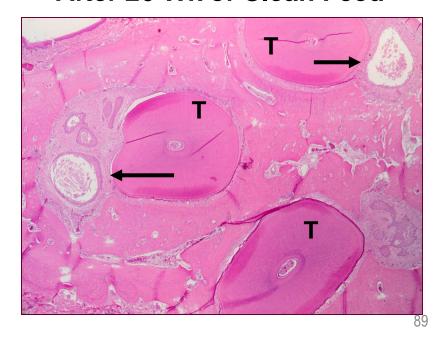
2,3,4,7,8-PeCDF

2,3,7,8-TCDF

- No effects on reproduction or kit survivability and growth
- Dose-related increase in incidence of jaw lesion in 30-wk-old juveniles



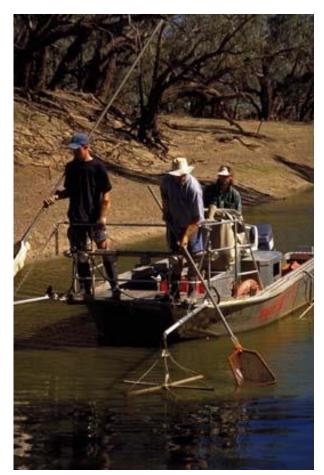
- Would the lesion progress after a defined exposure period?
 - Adult female mink were fed 24 ng PCB 126/g feed for 1, 2, 3, 4, or 5 wk
 - At the end of each exposure period
 - 2 animals per group assessed for presence of lesion
 - 2 animals per group placed on clean feed for 26 wk


Progression of Lesion

WEEK 1

After 1 Wk of PCB 126

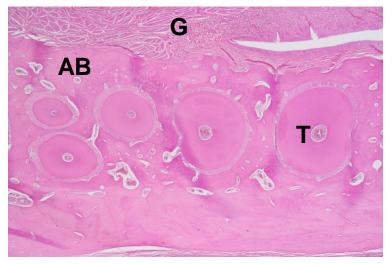
After 26 Wk of Clean Feed

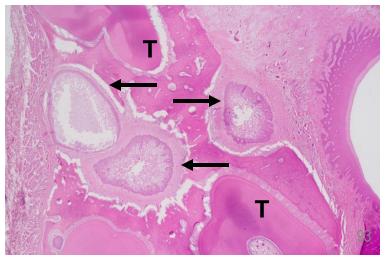

Jaw Lesion in Ranch Mink: Fish Feeding Studies

 Can jaw lesion be induced in ranch mink exposed to environmentallyderived TCDD-like chemicals

Jaw Lesion in Ranch Mink: Fish Feeding Studies

- Fish (carp) collected from river of interest
- Incorporated into mink feed at specific ΣPCB and TEQ concentrations
 - Represent quantity of fish consumed by wild mink (10-70%)
 - Represent quantity of PCBs/TEQs predicted to be consumed by mink residing in area of concern


Jaw Lesion in Ranch Mink: Fish Feeding Studies


- Diets fed to female mink from 8 wk prior to breeding through weaning of kits (approximately 160 days)
 - All adult females and a sample of kits necropsied when kits 6 wk old
 - Sample of kits maintained on respective diets for an additional 160 days (30 wk of age)

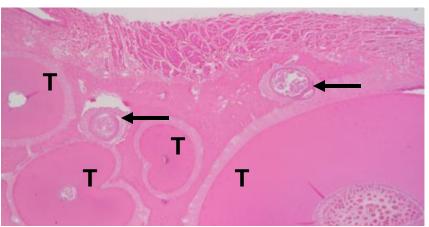
Saginaw River

- Contaminated with:
 - PCBs from automobile manufacturing
 - PCDDs and PCDFs from chemical manufacturing
- No effects on reproduction or kit survivability
- Jaw lesion in 30-wk-old juveniles
 - 4 of 8 animals at 1.1µg
 ΣPCBs/g feed (48 pg
 TEQs/g feed)
 - 6 of 8 animals at 1.7 μg ΣPCBs/g feed (73 pg TEQs/g feed)

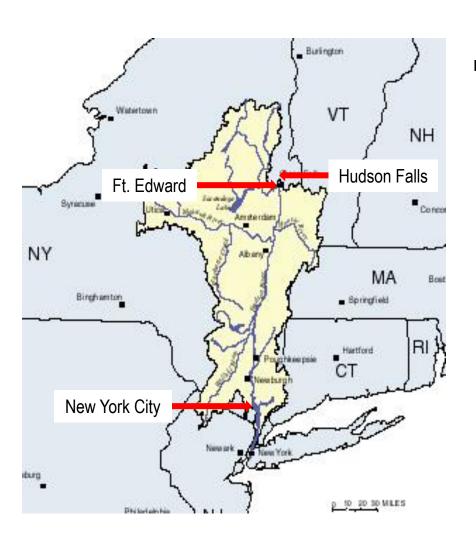
Housatonic River

- Portion of the river contaminated with PCBs originating from a facility that manufactured electrical transformers

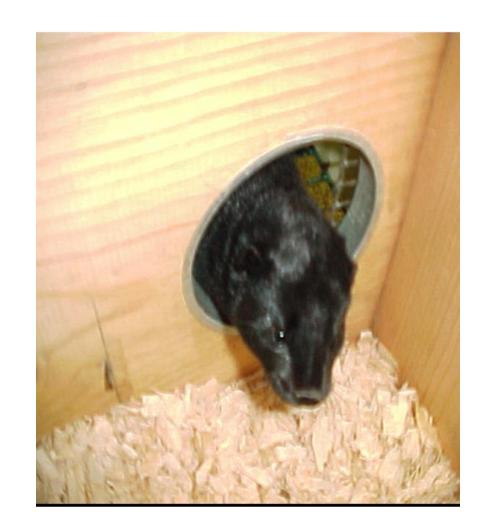
Housatonic River


Reproductive performance

 Decreased survivability of mink kits between 3 and 6 weeks of age at 3.7 μg ΣPCBs/g (69 pg TEQs/g)

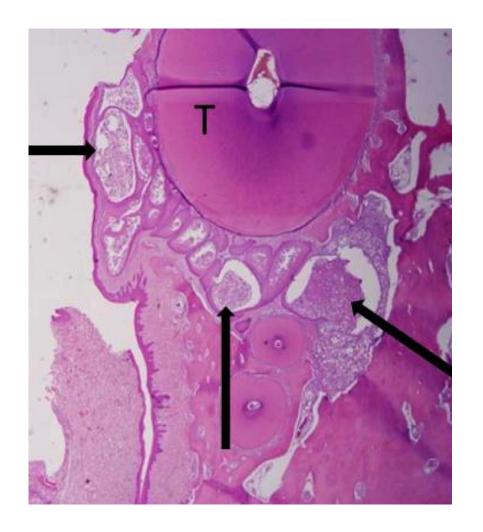

Jaw Lesion

- 1/6 animals at 0.96 μg
 ΣPCBs/g (9 pg TEQs/g)
- 2/6 animals at 1.6 μg
 ΣPCBs/g (16 pg TEQs/g)
- 6/6 animals at 3.7 μg
 ΣPCBs/g (69 pg TEQs/g)


Hudson River

- Contaminated with PCBs from Ft.
 Edward to New York
 City
 - Electrical transformer manufacturing facilities at Ft.
 Edward and Hudson Falls

Hudson River


- Reproductive performance
 - Stillborn kits
 - ↑ at 4.5 µg ∑PCBs/g
 (28 pg TEQs/g)
 - Kit survivability
 - Kit growth

Hudson River


Jaw lesion in adults

- 1/14 at 0.72 μg ∑PCBs/g
 (5.1 pg TEQs/g)
- 2/15 at 1.5 µg ∑PCBs/g (10 pg TEQs/g)
- 4/14 at 2.8 µg ∑PCBs/g (19 pg TEQs/g)
- 12/18 at 4.5 µg ∑PCBs/g
 (28 pg TEQs/g)
- 16/19 at 6.1 µg ∑PCBs/g (38 pg TEQs/g)

Jaw Lesion in Wild Mink

- Does the jaw lesion occur in wild mink?
- If so, is the occurrence associated with the presence of contaminants?

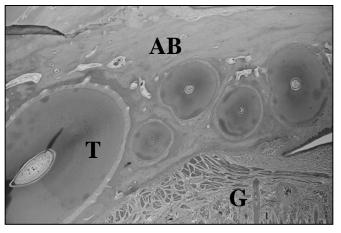
Rochester Embayment of Lake Ontario Area of Concern (REAOC)

- REAOC contaminated with PCBs, PCDDs and PCDFs
- 1/6 mink from REAOC had lesion
 - Gross evidence of lesion
 - Greatest concentration of hepatic PCBs (6 µg/g)
- 0/6 mink from reference site had lesion

St. Regis Mohawk Tribe (SRMT) Reservation

- St Lawrence River in upstate New York
- PCB contamination from automobile company foundry
- 1/11 mink had lesion

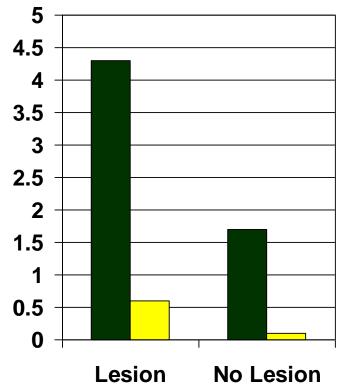
Kalamazoo River Area of Concern (KRAOC)


KRAOC

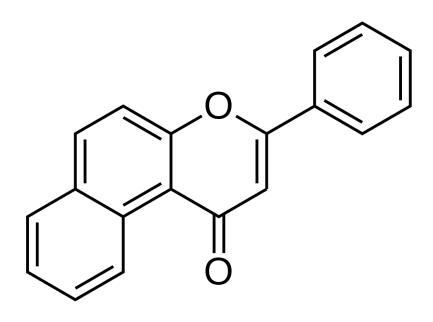
- 80 mile stretch from Morrow Dam in Kalamazoo County to Lake Michigan
- PCB contamination from recycling and processing of carbonless copy paper

KRAOC

- 4/9 mink collected from KRAOC had lesion
- 0/3 of the mink collected from the reference site had lesion

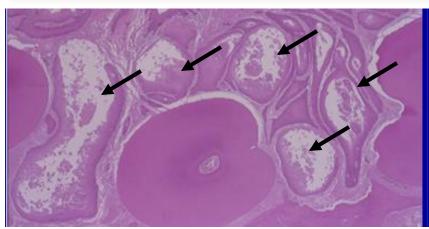


KRAOC

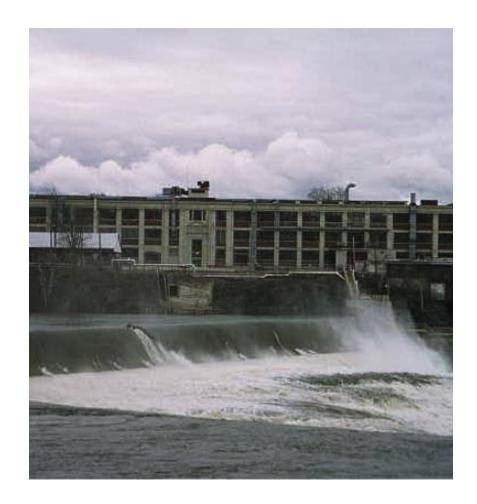

- Lesion severity significantly correlated with hepatic concentrations of:
 - Σ PCBs ($r^2 = 0.88$)
 - $\Sigma TEQs (r^2 = 0.89)$

Average PCB (µg/g)/TEQ (ng/g) Concentrations in Liver

Recent Studies


- Lesion induced by single ip injection of PCB 126
- Lesion induced by single ip injection of β-naphthoflavone
 - Ah receptor agonist
 - NOAEL = 0.4 mg/kgbw
 - LOAEL = 4.0 mg/kgbw

Summary


- Gross and histological evidence of jaw lesion in mink after exposure to single TCDD-like chemicals in a controlled exposure situation
 - TCDD
 - PCB 126
 - 2,3,7,8-TCDF
 - 2,3,4,7,8-PeCDF

Summary

- Mink exposed to environmentallyderived TCDD-like chemicals from 3 different locations had histological evidence of the lesion
 - Saginaw River
 - Housatonic River
 - Hudson River

Summary

- Wild mink collected from environments contaminated with TCDD-like chemicals had histological evidence of the lesion
 - Lake Ontario
 - St Lawrence River
 - Kalamazoo River

Conclusions

- This jaw lesion could pose a threat to wildlife health and survival
- Because the lesion...
 - ... can be induced by exposure to single TCDD-like chemicals in a laboratory setting
 - ... can be induced by exposure to environmentally-derived mixtures of TCDD-like chemicals in a laboratory setting
 - ... has been documented in wild mink collected in environments contaminated with TCDD-like chemicals
- ... it has potential be used as an indicator of TCDDinduced damage in piscivorous mammalian species

Acknowledgements

- Richard Aulerich
- Kerrie Beckett
- Joanna Chuck
- Rachel Ellick
- Scott Fitzgerald
- John Giesy
- John Hochstein
- Dianne Karsten
- Jane Link
- Stephanie Millsap

- Rachel Mitchell
- Jeremy Moore
- Angelo Napolitano
- John Newsted
- Debbie Powell
- James Render
- Diana Rosenstein
- Chanda Sharma
- Ben Yamini
- Matt Zwiernik